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(2d)], it can be seen from (A2) that the Bragg reflec- 
tion condition for the vector KTs(k~) reads 

0~-0(ks) = 0~(ks) + 27rn. (A3) 

2. ~ parameter 

We have introduced 77 in (20)" 

~7=0~o(k) -0~(k) -n27r .  (A4) 

Let kB be a vector in the Bragg reflection position, i.e. 

K ~ ( k a ) = k s + r g ~ + s g 2 - n g 3 ,  (A5a) 

0"~o(ks)= 0~(ks )+  27rn. (A5b) 

Let k be a vector in the neighbourhood of the vector 
ks. Then using (A4), (A5b) and (2e) we obtain 

~7 = 0~o(k)- 0 ~ ( k ) -  27rn 

= 0~-o(k)- 0 ~ ( k ) - [  0~-o(ks)- 0~(ks)]  

= a 3 k -  a3K ~(k) - [a3ka -- a3K ~(kB) ] 

= a3z[ Krsz (k) - Krsz(ka) + k~ - kin], (A6) 

so that the 77 parameter is a function of the known 
vectors ks and k. 

3. Correction of a misprint in equation (1.53) 

There is a misprint in equation (I.53); the term 

_ l___~,(igpqz~ 

Kpqz \ 2B / 

should be replaced by 

oz . 
Kpqz \ 2B ] 

4. P parameter appearing in equation ( l ib )  

When comparing ( l l b )  and (I.53) we obtain 

P = i k ~ ( i k / 2 B )  + (2/7r 1/2) B exp ( k2/4B 2) 

_ ~ ,  exp [ ikll(nlal + n2a2)] 

(nln2) 2 nlal + n2a2 
(oo) 

x {exp (--iklnlal + n2a2 ) 

x [1 - q~(Inla, + n2a2 B - ik/2B)] + c.c.}. (A7) 
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Abstract 

The Coulomb potential in a crystal is discussed. It is 
shown that its Fourier series expansion has a singular- 
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ity for the V(0, 0, 0) component, which is important 
when comparing different compounds, or when using 
the Coulomb potential as a probe for reactivity. 
Methods to calculate this term are discussed. Sum 
rules for multipolar moments of crystals in terms of 
structure factors are derived, which are of interest for 
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the comparison of microscopic and macroscopic 
dielectric properties. 

Introduction 

Coulombic interactions play an important role in the 
understanding of the structure and reactivity of 
molecules and solids. 

The electrostatic potential is extensively used to 
understand initial steps in some chemical reactions, 
and to study packing of molecules in solids (Politzer 
& Truhlar, 1981, and references therein). It is also a 
major part of the effective one-particle Hamiltonian 
used in Hartree-Fock or Kohn-Sham equations 
(Dahl & Avery, 1984; Erdahl & Smith, 1987). 

While the electrostatic potential in a crystal can be 
expanded in a Fourier series (Stewart, 1979), there 
is some ambiguity in the literature concerning the 
(0, 0, 0) Fourier component, which represents the 
average potential within the unit cell. If one studies 
a unique system, this constant would not be of great 
importance since it would correspond to an ad hoc 
zero for the potential. However, most studies are 
comparisons among various systems or correspond 
to finding preferential sites for a protonation or other 
reactions. In such cases, a unique convention for the 
zero of the potential is needed. Usually, this is defined 
as the potential at a position at infinite distance from 
any charge. Thus the (0, 0, 0) component of the 
Fourier series of the potential V must be carefully 
evaluated (Avery, 1987). 

In this paper, we discuss practical methods for 
evaluating the Coulomb potential in a crystal. After 
a rigorous discussion of the Fourier expansion of the 
potential, V(0, 0, 0) will be calculated by the use of 
a model multipole expansion firstly of the charge 
density and secondly of the structure factors. 

Let p,(r) be the total charge density of a system 
composed of nuclei with charge Zi at position Ri and 
electrons, p, (r), the nuclear charge density, is defined 
a s  

Thus, 

p.(r) = ~ Zf i (r -  R/). (1) 
J 

p,(r)=p,,(r)-p(r) (2) 

where p(r) is the electron charge density. 
The electroneutrality condition gives 

~ pt(r) dr=  0. (3a) 

Or, for a crystal with unit cell volume D, 

pt(r) dr=0.  (3b) 
a 

If p°(r) is the spherically symmetric electron density 
of isolated atom j, the 'pro-system' electron density 

may be defined as 

p0(r) = ~ po( r - R j  ) (4) 
J 

and the 'pro-system' total density as 

p°(r)=p,,(r)-p°(r) 

= ~  {Zf i ( r -  Rj) - p°(lr-  R/)}. (5) 
J 

The 'deformation' density Ap(r) is defined as 

Ap(r)=p(r) -p°(r )=-pt (r )+p°(r) .  (6) 

(See Coppens & Hall, 1982.) 

Fourier representation of the Coulomb potential 

The Coulomb potential V(r) created by the total 
charge density pt(r) is (Jackson, 1975) 

V(r) = ~ p t ( r ' ) / r - r '  dr'. (7) 

In this definition V(r)--> 0 at large distance from 
the distribution. V and p, are related by the Poisson 
equation 

V2 V(r) = -4-np, (r) 

or its reciprocal-space equivalent 

k2 V(k)= -4rrA(k), (8) 

where A(k) and V(k) are the Fourier transforms of 
P, and V respectively: 

A(k) = ~ pt(r) exp (2~-ik. r) dr 
(9) 

V(k)-- J V(r) exp (2~rik. r) dr. 

Insertion of (9) into (8) leads to the well known 
expression (Bertaut, 1952, 1978) 

V(k) = A(k)/.n-k 2. (10) 

Since A(0)= 0, due to the electroneutrality condi- 
tion, limk-,0 [A(k)/'rrk 2] requires careful discussion. 

Let us now suppose the system to be in the crystal- 
line state. We define the total structure factor by 

Ft(k) = ~ p,(r) exp (2~-ik. r) dr 

= F, , (k)-  F(k) ( l l a )  

where 

F, (k) = ~ Zj exp (2~ik. Rj) ( l lb )  
J 

is the nuclear structure factor, and F(k) the usual 
X-ray electronic structure factor. Let 

Va(k) = ~ V(r) exp (2~-ik. r) dr (12) 

and 
• (k) = ~ exp (2 ~rik. !) (13) 

I 
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be the interference function, where I is a lattice trans- 
lation. One obtains 

A ( k ) =  F,(k)O(k) (14a) 

V(k)= V~ (k) ~(k) .  (14b) 

When the crystal is infinite, one retrieves the well 
known diffraction conditions: 

Ooo(k) = (1/.Q) ~ 8 ( k -  H) (15) 
H 

where H is a reciprocal-lattice vector. 
Suppose now we start from a finite crystal with N 

unit cells. When the size is increased to infinity, it is 
assumed that the crystal size increases in all direc- 
tions. 

As O(k) is periodic in reciprocal space, it can be 
written as 

crp(k)=(1/J'2) ~, A ( k -  U). (16) 
H 

d is not uniquely defined. One can, for example, 
suppose that (A/O) is the restriction of • to the first 
Brillouin zone surrounding a given reciprocal-lattice 
point H, so that the various terms in (16) do not 
overlap. Alternatively, A can be taken as the shape 
transform of the crystal. 

A(k) must fulfil the conditions 

j" A(k) Ok= 1, 
(17) 

lim A(k) = 6(k). 
N-ooo 

6(k) has spherical symmetry when N ~ oo. In other 
words, an infinite crystal in every dimension is con- 
sidered as the limit of a sphere of increasing radius. 

Taking the Fourier inversion of (9), 

V(r) =~ V(k) exp (-2-rrik. r) dk, (18) 

and combining (10), (14) and (16), one gets 

V(r)=(1/Trl2) E~[F,(k)/k2]A(k-H) 
H 

x exp ( -27r ik .  r) dk. (19) 

For H ~ 0, we obtain 

lim ~ [F,(k)/k 2] exp (-27rik .  r ) A ( k -  H) dk 

= [  F t ( H ) / H  e] exp ( -27r i l l .  r). (20) 

Let us now examine the term for H-0 .  Since 
A(k)~  8(k), the exponential exp (-27rik .  r) may be 
replaced by 1 and 

lim ~ [Ft(k)/k 2] exp (-27rik .  r)A(k) dk 

= lim j" Ft(k)A(k) dk d/~, (21) 
N--~oo 

where dk is written a s  k 2 dk d/~, d/~ being the variation 
of the solid angle. 

We may define 

(F,(k))= J" d/~ Ft(k) (22) 

as the orientational average of the structure factor. 
Since (F,) has small variations with k compared to A: 

lim ~ [F,(k)/k 2] exp (-27rik .  r)A(k) dk 
N o o o  

-- lim [(Ft(k))/k2]. (23) 
k = , 0  . 

In summary, for an infinite crystal, the Coulomb 
potential can be represented by the Fourier series 

V(r) = (1/.0) ~ V(H) exp ( -27r i l l .  r) (24) 
H 

with 

V(H) = Ft(H)/7rH 2 for H ~ 0, 
(25) 

V(0) = lim ° [(F,(k))/~rk 2] for H = 0 .  

V(0) is also the average potential in the cell times 
the volume of the unit cell: 

V(0) = J V(r) dr. (26) 
o 

In order to calculate V(0), let us expand exp (27rik. r) 
for small k and insert into (11) 

Ft(k) = 27ri ~ (k .  r)p,(r) dr 
O 

-27r  2 ~ (k.  r)2p,(r) d r+  . . . .  (27) 

The contribution of the first term to (F,(k)) is zero. 
Thus, 

lim(F,(k))/k2=-(27r2/3) ~ r2p,(r)+... (28) 
k--,,O 

and, finally, 

V(0) = - ( 2 7 r / 3 )  ~ r2p,(r)dr. (29) 

Therefore, V(0) is not a trivial quantity. It can only 
be calculated at the end of the structural analysis. 
This also holds true for the reciprocal-space evalu- 
ation of V(0), discussed below, which requires knowl- 
edge of the phases of the structure factors. 

Direct-space calculation of V(0) 

V(0) can be calculated from the results of the multi- 
polar expansion of the electronic charge density 
(Hansen & Coppens, 1978; Coppens & Hall, 1982; 
Coppens, 1991; Beeker & Coppens, 1991), p, is writ- 
ten as the sum of pseudo-atom densities: 

p,(r) = E Po( r - Rj ) (30a) 
J 

We define 

pu(r) = Zfi(r) - pj(r). (30b) 

q3 = j pu(r) dr 

Dj = j" rpu(r) dr (31) 

oJj = J r2pu(r) dr 
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as the charge, dipole and second moment of each 
pseudo-atom. Substitution of (30a) and (31) into (29) 
leads to 

cell 

V(0)=- (2~r /3 )  Y~ ( g E q j + 2 R j . a j + % ) .  (32) 

The values for qj, D and toj can be extracted from a 
refinement based on the spherical-harmonic 
expansion (Hansen & Coppens, 1978; Coppens, 
1991). 

We may write 
pj=p;+6pj ,  (33) 

where the spherical part p} is 
s 3 pj = Njcpjc(r)+ PjoAjpjv(Air). (34) 

Njc is the number of core electrons, pj~ is the nor- 
malized core electron density, Pjo is the normalized 
valence electron density, Aj a screening coefficient 
and Pj~ the effective valence population for pseudo- 
atom j. Notice that the free-atom electron density pO 
is 

p°(r) = Nj~pjc(r)+ Njvpjv(r) (35a) 

where Njo is the number of valence electrons of the 
j th  free atom, with 

Zj = Njc + Njv. (35b) 

The second term in (33) is given by 

6pj(r)= 2 PJt,.,,pRjt(r)y,,,p(~), (36) 
I,m,p 

where ytmp(r) are real spherical harmonics, Pj,,,p the 
population coefficients and p = +. The radial func- 
tions Rj~ (r) are generally approximated by Slater-type 
functions: 

Rfl(r)=[~J['J'+3)/(njl+2)!]r%exp(-~jtr). (37) 

Let x, y, z be an orthonormal local coordinate sys- 
tem for a given pseudo-atom. The three terms in (32) 
are given by 

qj=Njo-Pjv-PJoo 

Dj.,, = -P'~,+[4(nj, + 3)/3 ~'j,] 

Djy = --PJl_[4(nj, + 3)/3~jl1 
(38) 

Djz = -P~o_[a(nj, + 3)/3~)~] 
2 2 % = -[  Nj~(r2~}+ Pjo(rj~>/ Aj] 

- [ (  njo + 4)( njo + 3)/~'2o] P~o, 

where the mean square radii (r~) and (r~) are 

(r~c) = ~ r 2 pj~(r) dr = ( 1 / 47r 2) V 2fj~ ( k )]k=O 
(39) 

(r~) = ~ r2pj~(r) dr = - (  1 / 4 ~r2)V2fjv ( k)[k=O. 

It should be remarked that the pro-crystal density 
p°(r) gives a contribution to V(0): 

cell 

V°(O)= (27r/3) 2 Zj(r~) 
J 

with 

Zj(r2} = ~ r2p°(r) dr. (40) 

Finally, we notice that the expressions that have 
been derived correspond to a system at rest. 

Reciprocal-space expansion of V(O); sum rules for 
multipolar moments 

It is also possible to express V(0) in terms of the 
structure factors. This can be done by using either 
calculated or 'observed' structure factors. The latter 
correspond to the thermally averaged charge density, 
and thus lead to the potential of the thermally 
averaged density. 

The dipole moment D of the unit cell is 

D =  ]" rp,(r) d r =  Dxa+ Dyb+ Dze, (41) 
12 

where a, b, c define the unit cell. 
Notice that D is related to the bulk polarization P 

by the simple relation 

P = D / a .  (42) 

Let us write the structure factor Ft(H) as 

F,(H) = A, (n )  + iB,(H). (43) 

Using the Fourier-series expansion of p,(r) in (41), 
one finds 

o o  

D x = - ( 1 / 7 r )  2 B,( h, O, O)/ h 
h = l  

0(3 

Dy = -(1/7r)  Y~ B,(0, k, 0) /k  (44) 
k = l  

o o  

D z = ( - 1 / T r )  Y~ B,(O,O,l)/1. 
/ = 1  

Equation (44) is a sum rule that has to be satisfied 
by the structure factors. It relates microscopic 
quantities (the structure factors) with macroscopic 
quantities ( Dx, Dy, Dz). 

We now turn our attention to the quadrupolar 
contributions, and we define 

o) = j" r2p,(r) dr (45) 
£2 

such that [from (29)] 

V(0) = -(27r/3)w. 

Let Q~t3 be the quadrupolar tensor: 

Q~t3 = ~ XaXt3pt(r) dr, (46) 
12 

where a,/3 stand for the a, b, c directions. If gat3 is 
the direct-space metric tensor, 

= Y~ g ~ Q ~  (47) 
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and Q~ can be written as 
oo 

Qx~ = D x -  (1/7r2) E [At(h, O, 0)/h 2] 
h = l  

oo 

Qyy= Dy-(1/7r2) E [A,(O,k,O)/k2] 
k = l  

oo 

Q~z=Dz-(1/Tr 2) Y [A,(O,O,l)/l 2] 
I = 1  

Oxr=(1/2)(Dx + De) (48) 

- (1/4zr  2) Y [G(h, k, 0)/hk] 
h,k#O 

Qy~=(1/2)(Dy+ D~) 

-(1/417" 2) ~ [F,(0, k, l)/kl] 
KI#O 

Qz~=(1/2)(Dz+D~) 

-(1/417- 2) Y [F,(h,O,l)/hl]. 
t,h#O 

Equation (48) is the sum rule relating the microscopic 
information to bulk quadrupolar tensor. 

Concluding remarks 

A careful discussion of the Coulomb potential has 
shown the necessity to consider the V(0) term in its 
Fourier expansion. This term is important when com- 
parative studies are to be done. It can be calculated 
either in direct space, using a multipolar expansion 

of the density, or in reciprocal space, from total 
structure factors. The reciprocal-space expansion 
leads to sum rules which must be fulfilled by the 
structure factors, and which connect the microscopic 
charge density with bulk multipolar moments that 
can be measured by different techniques. 

This work was supported in part by the US National 
Science Foundation (CHE8711736), the National 
Institute of Health (5R01HL2388408) and a NATO 
Research Contract No. 587/83. 
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Abstract 

The previously known structures of the modified 
nucleic acid bases 3-deazauracil (4-hydroxy-2- 
pyridone) and 6-azauracil (2H,4H- 1,2, 4-triazine-3,5- 
dione) have been shown to be determined by model- 
based reciprocal-space Patterson methods from 
low-resolution X-ray powder diffraction data. The 
data sets used in structural solution consisted of 26 
and 23 reflections respectively, with IF hi values 
extracted by a simple fitting procedure. The structural 

0108-7673/90/040258-05503.00 

parameters found are of limited accuracy and only 
severely constrained refinements (on F) are possible 
from these data. However, these determinations indi- 
cate the strength of model-based Patterson methods 
to reveal structural information even from poor data. 

Introduction 

The solution of crystal structures from laboratory 
X-ray powder data using Patterson methods has 
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